Monday 9 November 2015

Traditional Water Conservation Techniques

Paar System
  Paar is a common water harvesting practice in the western Rajasthan region. It is a common place where the rainwater flows from the agar (catchment) and in the process percolates into the sandy soil. In order to access the rajani pani (percolated water) kuis or beris are dug in the agor (storage area). Kuis or beris are normally 5 metres (m) to 12 m deep. The structure was constructed through traditional masonary technology. Normally six to ten of them are constructed in a paar. 

However depending on the size of the paar the numbers of kuis or beris are decided. Bhatti mentions that there are paars in Jaisalmer district where there are more than 20 kuis are in operation. This is the most predominant form of rainwater harvesting in the region. Rainwater harvested through PAAR technique is known as Patali paani.

Eri
Approximately one-third of the irrigated area of Tamil Nadu is watered by eris (tanks). Erishave played several important roles in maintaining ecological harmony as flood-control systems, preventing soil erosion and wastage of runoff during periods of heavy rainfall, and recharging the groundwater in the surrounding areas. The presence of eris provided an appropriate micro-climate for the local areas. Without eris, paddy cultivation would have been impossible.

Till the British arrived, local communities maintained eris. Historical data from Chengalpattu district, for instance, indicates that in the 18th century about 4-5 per cent of the gross produce of each village was allocated to maintain erisand other irrigation structures. Assignments of revenue-free lands, calledmanyams, were made to support village functionaries who undertook to maintain and manage eris. These allocations ensured eri upkeep through regular desilting and maintenance of sluices, inlets and irrigation channels.

The early British rule saw disastrous experiments with the land tenure system in quest for larger land revenues. The enormous expropriation of village resources by the state led to the disintegration of the traditional society, its economy and polity. Allocations for maintenance of eris could no longer be supported by the village communities, and these extraordinary water harvesting systems began to decline.

Ooranis
The tanks, in south Travancore, though numerous, were in most cases oornis containing just enough water to cultivate the few acres of land dependent on them. The irregular topography of the region and the absence of large open spaces facilitated the construction of only small tanks unlike large ones seen in the flat districts of the then Madras Presidency, now Tamil Nadu.


Kuls
Kuls
 are water channels found in precipitous mountain areas. These channels carry water from glaciers to villages in the Spiti valley of Himachal Pradesh. Where the terrain is muddy, the kul is lined with rocks to keep it from becoming clogged. In the Jammu region too, similar irrigation systems called kuhls are found. 


Naula
Naula is a surface-water harvesting method typical to the hill areas of Uttaranchal. These are small wells or ponds in which water is collected by making a stone wall across a stream.



Khatri
Khatris are structures, about 10x12 feet in size and six feet deep carved out in the hard rock mountain. The specially trained masons construct them at a cost of Rs 10,000-20,000 each. These traditional water harvesting structures are found in Hamirpur, Kangra and Mandi districts of Himachal Pradesh.

There are two types of khatris: one for animals and washing purposes in which rain water is collected from the roof through pipes, and other used for human consumption in which rainwater is collected by seepage through rocks. Interestingly, the khatris are owned by individual as well as by a community. There are government khatris as well, which are maintained by the panchayat.

Zabo
The zabo (the word means 'impounding run-off') system is practiced in Nagaland in north-eastern India. Also known as the ruza system, it combines water conservation with forestry, agriculture and animal care.

Villages such as Kikruma, where zabos are found even today, are located on a high ridge. Though drinking water is a major problem, the area receives high rainfall. The rain falls on a patch of protected forest on the hilltop; as the water runs off along the slope, it passes through various terraces. The water is collected in pond-like structures in the middle terraces; below are cattle yards, and towards the foot of the hill are paddy fields, where the run-off ultimately meanders into. 

Cheo-ozihi
The river Mezii flows along the Angami village of Kwigema in Nagaland. The riverwater is brought down by a long channel. From this channel, many branch channels are taken off, and water is often diverted to the terraces through bamboo pipes. One of the channels is named Cheo-oziihi - oziihi means water and Cheo was the person responsible for the laying of this 8-10 km-long channel with its numerous branches. This channel irrigates a large number of terraces in Kwigwema, and some terraces in the neighbouring village. There are three khels and the village water budget is divided among them.

Korambus
Korambu is a temporary dam stretching across the mouth of channels, made of brushwood, mud and grass. It is constructed by horizontally fixing a strong wooden beam touching either banks of the canal. A series of vertical wooden beams of appropriate height is erected with their lower ends resting firmly on the ground and the other ends tied to the horizontal beam. Closely knitted or matted coconut thatch is tied to this frame. A coat of mud is applied to the matted frame. A layer of grass is also applied carefully which prevents dissolution of the applied mud.

Korambu is constructed to raise the water level in the canal and to divert the water into field channels. It is so built that excess water flows over it and only the required amount of water flows into the diversion channels.
The height of the Korambu is so adjusted that the fields lying on the upstream are not submerged. Water is allowed to flow from one field to another until all the field are irrigated. They are built twice a year especially before the onset of the monsoon season in order to supply water during winter and summer season. In Kasargod and Thrissur districts of Kerala, Korambu is known as chira.

Jackwells
The difference in the physiography, topography, rock types and rainfall meant that the tribes in the different islands followed different methods of harvesting rain and groundwater.

For instance, the southern part of the Great Nicobar Island near Shastri Nagar has a relatively rugged topography in comparison to the northern part of the islands. The shompen tribals here made full use of the topography to harvest water. In lower parts of the undulating terrain, bunds were made using logs of hard bullet wood, and water would collect in the pits so formed. They make extensive use of split bamboos in their water harvesting systems. A full length of bamboo is cut longitudinally and placed along a gentle slope with the lower end leading into a shallow pit. These serve as conduits for rainwater which is collected drop by drop in pits called Jackwells. Often, these split bamboos are placed under trees to harvest the throughfalls (of rain) through the leaves. A series of increasingly bigger jackwells is built, connected by split bamboos so that overflows from one lead to the other, ultimately leading to the biggest jackwell, with an approximate diameter of 6 m and depth of 7 m so that overflows from one lead to the other. 
Dongs
Dongs
 are ponds constructed by the Bodo tribes of Assam to harvest water for irrigation. These ponds are individually owned with no community involvement.


Apatani

This is a wet rice cultivation cum fish farming system practiced in elevated regions of about 1600 m and gentle sloping valleys, having an average annual rainfall about 1700 mm and also rich water resources like springs and streams. This system harvests both ground and surface water for irrigation. It is practiced by Apatani tribes of ziro in the lower Subansiri district of Arunachal Pradesh.

In Apatani system , valleys are terraced into plots separated by 0.6 meters high earthen dams supported by bamboo frames. All plots have inlet and outlet on opposite sides. The inlet of lowlying plot functions as an outlet of the high lying plot. Deeper channels connect the inlet point to outlet point. The terraced plot can be flooded or drained off with water by opening and blocking the inlets and outlets as and when required. The stream water is tapped by constructing a wall of 2-4 m high and 1 m thick near forested hill slopes. This is conveyed to agricultural fields through a channel network.

Virdas

Virdas are shallow wells dug in low depressions called jheels (tanks). They are found all over the Banni grasslands, a part of the Great Rann of Kutch in Gujarat. They are systems built by the nomadic Maldharis, who used to roam these grasslands. Now settled, they persist in using virdas.

These structures harvest rainwater. The topography of the area is undulating, with depressions on the ground. By studying the flow of water during the monsoon, the Maldharis identify these depressions and make their virdas there.

Essentially, the structures use a technology that helps the Maldharis separate potable freshwater from unpotable salt water. After rainwater infiltrates the soil, it gets stored at a level above the salty groundwater because of the difference in their density. A structure is built to reach down (about 1 m) to this upper layer of accumulated rainwater. Between these two layers of sweet and saline water, there exists a zone of brackish water. As freshwater is removed, the brackish water moves upwards, and accumulates towards the bottom of the virda.

Katas / Mundas / Bandhas 

The katas, mundas andbandhas were the main irrigation sources in the ancient tribal kingdom of the Gonds (now in Orissa and Madhya Pradesh). Most of these katas were built by the village headmen known as gountias, who in turn, received the land from the Gond kings. Land here is classified into four groups on the basis of its topography: aat, (highland); mal (sloped land); berna (medium land); and bahal (low land). 

kata is constructed north to south, or east to west, of a village. A strong earthen embankment, curved at either end, is built across a drainage line to hold up an irregularly-shaped sheet of water. The undulations of the country usually determine its shape as that of a long isosceles triangle, of which the dam forms the base. It commands a valley, the bottom of which is the bahalland and the sides are the mal terrace. As a rule, there is a cut high up on the slope near one end of the embankment from where water is led either by a small channel or tal, or from field to field along terraces, going lower down to the fields. In years of normal rainfall, irrigation was not needed because of moisture from percolation and, in that case, the surplus flow was passed into a nullah. In years of scanty rainfall, the centre of the tank was sometimes cut so that the lowest land could be irrigated. 


Surangam

Kasaragod district in the northern Malabar region of Kerala is an area whose people cannot depend directly on surface water. The terrain is such that there is high discharge in rivers in the monsoon and low discharge in the dry months. People here depend, therefore on groundwater, and on a special water harvesting structure called surangam.
The word surangam is derived from a Kannada word for tunnel. It is also known as thurangamthorapu, mala, etc, in different parts of Kasaragod. It is a horizontal well mostly excavated in hard laterite rock formations. The excavation continues until a good amount of water is struck. Water seeps out of the hard rock and flows out of the tunnel. This water is usually collected in an open pit constructed outside the surangam.

surangam is about 0.45-0.70 metres (m) wide and about 1.8-2.0 m high. The length varies from 3-300 m. Usually several subsidiary surangams are excavated inside the main one. If the surangam is very long, a number of vertical air shafts are provided to ensure atmospheric pressure inside. The distance between successive air shafts varies between 50-60 m. The approximate dimensions of the air shafts are 2 m by 2 m, and the depth varies from place to place.

Surangams are similar to qanats which once existed in Mesopotamia and Babylon around 700 BC.1,2 By 714 BC, this technology had spread to Egypt, Persia (now Iran) and India. The initial cost of digging a surangam (Rs 100-150 per 0.72 m dug) is the only expenditure needed, as it hardly requires any maintenance. Traditionally, a surangam was excavated at a very slow pace and was completed over generations.

1 comment: